Transmission-reciprocal transmission index and coindex of graphs

Author:

Ramane Harishchandra S.1,Kitturmath Deepa V.1,Bhajantri Kavita2

Affiliation:

1. Department of Mathematics , Karnatak University , Dharwad - , India

2. Department of Mathematics , JSS Banashankari Arts, Commerce and Shantikumar Gubbi Science College , Vidyagiri, Dharwad-580004 , India

Abstract

Abstract The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as r s ( u ) = v V ( G ) 1 d ( u , v ) rs(u) = \sum\nolimits_{v \in V\left( G \right)} {{1 \over {d\left( {u,v} \right)}}} , where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index T R T ( G ) = u v E ( G ) ( σ ( u ) r s ( u ) + σ ( v ) r s ( v ) ) TRT\left( G \right) = \sum\nolimits_{uv \in E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} and its coindex T R T ¯ ( G ) = u v E ( G ) ( σ ( u ) r s ( u ) + σ ( v ) r s ( v ) ) \overline {TRT} \left( G \right) = \sum\nolimits_{uv \notin E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} , where E(G) is the edge set of a graph G and establish the relation between TRT(G) and T R T ¯ ( G ) \overline {TRT} \left( G \right) (G). Further compute this index for some standard class of graphs and obtain bounds for it.

Publisher

Walter de Gruyter GmbH

Reference18 articles.

1. [1] M. Aouchiche, P. Hansen, Distance spectra of graphs: A survey, Linear Algebra Appl. 458 (2014) 301–386. ⇒8510.1016/j.laa.2014.06.010

2. [2] A. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math., 158 (2010) 1571–1578. ⇒86

3. [3] A. Ashrafi, T. Došlić, A. Hamzeh, Extremal graphs with respect to the Zagreb coindices, MATCH Commun. Math. Comput. Chem., 65 (2011) 85–92. ⇒86

4. [4] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017) 17–100. ⇒86

5. [5] K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices, number of edges and diameter, MATCH Commun. Math. Comput. Chem., 64 (2010) 647–660. ⇒85

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3