High Performance Machine Learning Models of Large Scale Air Pollution Data in Urban Area

Author:

Gocheva-Ilieva Snezhana G.1,Ivanov Atanas V.1,Livieris Ioannis E.2

Affiliation:

1. Faculty of Mathematics and Informatics , University of Plovdiv Paisii Hilendarski , 4000 Plovdiv , Bulgaria

2. Department of Mathematics , University of Patras , Patras , Greece

Abstract

Abstract Preserving the air quality in urban areas is crucial for the health of the population as well as for the environment. The availability of large volumes of measurement data on the concentrations of air pollutants enables their analysis and modelling to establish trends and dependencies in order to forecast and prevent future pollution. This study proposes a new approach for modelling air pollutants data using the powerful machine learning method Random Forest (RF) and Auto-Regressive Integrated Moving Average (ARIMA) methodology. Initially, a RF model of the pollutant is built and analysed in relation to the meteorological variables. This model is then corrected through subsequent modelling of its residuals using the univariate ARIMA. The approach is demonstrated for hourly data on seven air pollutants (O3, NOx, NO, NO2, CO, SO2, PM10) in the town of Dimitrovgrad, Bulgaria over 9 years and 3 months. Six meteorological and three time variables are used as predictors. High-performance models are obtained explaining the data with R2 = 90%-98%.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference26 articles.

1. 1. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union. Vol. L152. 2008, No 1.

2. 2. Air Quality Standards. European Commission. Environment, 2015 (online). http://ec.europa.eu/environment/air/quality/standards.htm

3. 3. Air Quality in Europe – 2019 Report. European Environment Agency. EEA Report 10, 2019 (online). https://www.eea.europa.eu/publications/air-quality-in-europe-2019.

4. 4. Brunekreef, B., S. T. Holgate. Air Pollution and Health. – The Lancet, Vol. 360, 2002, No 9341, pp. 1233-1242.

5. 5. Guarnieri, M., J. R. Balmes. Outdoor Air Pollution and Asthma. – The Lancet, Vol. 383, 2014, No 9928, pp. 1581-1592.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3