Modelling and Forecasting of EUR/USD Exchange Rate Using Ensemble Learning Approach

Author:

Boyoukliev Ivaylo V.1,Kulina Hristina N.1,Gocheva-Ilieva Snezhana G.1

Affiliation:

1. Faculty of Mathematics and Informatics , University of Plovdiv Paisii Hilendarski , Plovdiv , Bulgaria

Abstract

Abstract The aim of the study is to obtain an accurate result from forecasting the EUR/USD exchange rate. To this end, high-performance machine learning models using CART Ensembles and Bagging method have been developed. Key macroeconomic indicators have been also examined including inflation in Europe and the United States, the index of unemployment in Europe and the United States, and more. Official monthly data in the period from December 1998 to December 2021 have been studied. A careful analysis of the macroeconomic time series has shown that their lagged variables are suitable for model’s predictors. CART Ensembles and Bagging predictive models having been built, explaining up to 98.8% of the data with MAPE of 1%. The degree of influence of the considered macroeconomic indicators on the EUR/USD rate has been established. The models have been used for forecasting one-month-ahead. The proposed approach could find a practical application in professional trading, budgeting and currency risk hedging.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3