New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands

Author:

Zbiri Asmae1,Hachmi Azeddine1,Haesen Dominique2,Alaoui-Faris Fatima Ezzahrae El1

Affiliation:

1. Department of Biology , Mohammed V University , Faculty of Science , Morocco

2. Vlaamse Instelling Voor Technologisch Onderzoek (VITO) , Belgium

Abstract

Abstract Remotely sensed soil moisture products showed sensitivity to vegetation cover density and soil typology at regional dryland level. In these regions, drought monitoring is significantly performed using soil moisture index and rainfall data. Recently, rainfall and soil moisture observations have increasingly become available. This has hampered scientific progress as regards characterization of land surface processes not just in meteorology. The purpose of this study was to investigate the relationship between a newly developed precipitation dataset, SM2RAIN (Advanced SCATterometer (SM2RAIN-ASCAT), and NDVI (eMODIS-TERRA) in monitoring drought events over diverse rangeland regions of Morocco. Results indicated that the highest polynomial correlation coefficient and the lowest root mean square error (RMSE) between SM2RAIN-ASCAT and NDVI were found in a 10-year period from 2007 to 2017 in all rangelands (R = 0.81; RMSE = 0.05). This relationship was strong for degraded rangeland, where there were strong positive correlation coefficients for NDVI and SM2RAIN (R = 0.99). High correlations were found for sparse and moderate correlations for shrub rangeland (R = 0.82 and 0.61, respectively). The anomalies maps showed a very good similarity between SM2RAIN and Normalized Difference Vegetation Index (NDVI) data. The results revealed that the SM2RAIN-ASCAT and NDVI product could accurately predict drought events in arid and semi-arid rangelands.

Publisher

Walter de Gruyter GmbH

Subject

Ecology

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3