Influence of reference stations on the stability of the geodetic control network during deformation determination in the area of Kadzielnia in Kielce

Author:

Krawczyk Karol1

Affiliation:

1. 1 Faculty of Environmental, Geomatic and Energy Engineering , Kielce University of Technology , al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce , Poland

Abstract

Abstract Observations of land surface deformation are one of the important tasks of surveying, especially in landslide areas. They concern the determination in time of the magnitude of the deformation, on the basis of a stable reference system based on a geodetic control points. The whole measurement process can be divided into two parts. One part concerns the observation of reference points (geodetic control points) and the other the observation of the object itself. In the first, in addition to classical methods, GNSS (Global Navigation Satellite System) techniques based on reference stations are used. In the second, common observation methods such as laser scanning or photogrammetric methods using Unmanned Aerial Vehicles (UAV) are used. These observations are carried out in a specific time period in relation to the aforementioned geodetic control points. An area such as Kadzielnia in Kielce is covered by a long-term observation programme. A key element is the survey of the constancy of the geodetic control points, which are located in the epicentre of the survey. The survey of the constancy of the control points at Kadzielnia was based on a static method using SmartNet stations. Taking into account the fact that reference stations are treated as error-free reference points and that they operate 24 hours a day, it was decided to study the variability of their position over a longer period of time, as well as to determine the influence on the geodetic control points and to observe the deformation of the object during the measurement cycles.

Publisher

Walter de Gruyter GmbH

Reference17 articles.

1. Banasik, P., Góral, W., Kudrys, J., and Skorupa, B. (2008). Modern Methods of GPS Usage in Geodesy. AGH Publishing House, Cracow.

2. Barbarella, M. and Fiani, M. (2013). Monitoring of large landslides by terrestrial laser scanning techniques: field data collection and processing. European Journal of remote sensing, 46(1):126–151, doi:10.5721/EuJRS20134608.

3. EPNACC WAT (2023). GNSS Data Research Infrastructure Centre. Co-funded by the ERDF. Last accessed January 2023.

4. Figurski, M., Szafranek, K., Bogusz, J., and Kamiński, P. (2010). Investigation on stability of mountainous EUPOS sites’ coordinates. Acta Geodynamica et Geomaterialia, 7(3):263–274.

5. Garus, R., Szczałubow, D., and Szczałubow, W. (2007). Illustrated guide to Kielce. Agencja JP, Kielce.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3