Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings

Author:

Majkowska-Marzec Beata1,Sypniewska Joanna1

Affiliation:

1. Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology , 11/12 Narutowicza, 80-233 Gdańsk , Poland

Abstract

Abstract Laser surface modification of titanium alloys is one of the main methods of improving the properties of titanium alloys used in implantology. This study investigates the microstructural morphology of a laser-modified surface layer on a Ti13Nb13Zr alloy with and without a carbon nanotube coating deposited by electrophoretic deposition. Laser modification was performed for samples with and without carbon nanotube coating for two different laser powers of 800 W and 900 W and for different scan rates: 3 mm/s or 6 mm/s at 25 Hz, and the pulse duration was 2.25 ms or 3.25 ms. A scanning electron microscope SEM was used to evaluate the surface structure of the modified samples. To observe the heat-affected zones of the individual samples, metallographic samples were taken and observed under an optical microscope. Surface wettability tests were performed using a goniometer. A surface roughness test using a profilograph and a nanoindentation test by NanoTest™ Vantage was also performed. Observations of the microstructure allowed to state that for higher laser powers the surfaces of the samples are more homogeneous without defects, while for lower laser powers the path of the laser beam is clearer and more regular. Examination of the microstructure of the cross-sections indicated that the samples on which the carbon nanotube coating was deposited are characterized by a wider heat affected zone, and for the samples modified at 800 W and a feed rate of 3 mm/s the widest heat affected zone is observed. The wettability tests revealed that all the samples exhibit hydrophilic surfaces and the samples with deposited carbon nanotube coating increase it further. Surface roughness testing showed a significant increase in Ra for the laser-modified samples, and the presence of carbon nanotubes further increased this value. Nanoindentation studies showed that the laser modification and the presence of carbon coating improved the mechanical properties of the samples due to their strength.

Publisher

Walter de Gruyter GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3