Numerical Analysis of Geometrical Parameters Effect on Contact Zone Under Fretting Fatigue Loading

Author:

Chaouch Mohamed Ikhlef1,Baltach Abdelghani12,Benhamena Ali1

Affiliation:

1. Laboratory LPQ3M, BP763 , University of Mascara , Mascara , Algeria

2. Department of Mechanical Engineering , University of Tiaret , Algeria

Abstract

Abstract The fatigue process under fretting conditions is characterized by small oscillatory movements due to vibrating or cyclic loads between two surfaces in contact. Two phenomena can arise as a consequence: the surface wear of the bodies in contact, giving rise to the so-called fretting wear. The second phenomenon concerns crack nucleation in the contact region, causing a reduction in the fatigue strength of the component subjected to cyclic loading. This process is called “fretting fatigue”. In the present study, finite element models (2D-FEM) are provided to demonstrate the effect of pad radius on the contact parameters such as: contact pressure, shear traction, stresses, sliding, size of contact line and crack nucleation and its location along the contact line of aeronautical Al2024 alloy under fretting fatigue loading. Six numerical models are utilized to describe the effect of changing pad radii on contact stresses and damage of crack nucleation. The Ruiz parameter criterion should be used to predict the location of crack initiation in the contact zone. Comparison of the finite element results shows that there is a good agreement between the numerical modeling predictions with those analytical results. The stress field, relative slip, and damage parameters in fretting fatigue loading were highlighted. The pad radius substantially affects the distribution of contact parameters. Particular attention must be taken into consideration to this variable when analyzing the structure in fretting fatigue.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3