Effect of electron beam irradiation on filtering facepiece respirators integrity and filtering efficiency
Author:
Chmielewska Dagmara1ORCID, Werner Łukasz2ORCID, Gryczka Urszula1ORCID, Migdał Wojciech1ORCID
Affiliation:
1. Institute of Nuclear Chemistry and Technology , Dorodna 16 Str. , Warsaw , Poland 2. Warsaw University of Technology , Faculty of Chemical and Process Engineering , Warynskiego 1 Str. , Warsaw , Poland
Abstract
Abstract
The outbreak of the COVID-19 pandemic has shown that the demand for medical masks and respirators exceeds the current global stockpile of these items, and there is a dire need to increase the production capacity. Considering that ionizing radiation has been used for sterilization of medical products for many years and electron beam (EB) irradiation enables the treatment of huge quantities of disposable medical products in a short time this method should be tested for the mask’s decontamination. In this work, three different filtering facepiece respirators (FFRs) were irradiated with electron beams of 12 kGy and 25 kGy. The results confirmed that the decrease in filtration efficiency after irradiation of all respirators results from the elimination of the electric charge from the polypropylene (PP) fibers in the irradiation process. Moreover, the applied doses may affect the thermal stability of PP fabrics, while filtering materials structure and integrity have not changed after irradiation.
Publisher
Walter de Gruyter GmbH
Subject
Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics
Reference40 articles.
1. Yu, I. T. S., Li, Y., Wong, T. W., Tam, W., Chan, A. T., Lee, J. H. W., Leung, D. Y. C., & Ho, T. (2004). Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med., 350, 1731–1739. DOI: 10.1056/nejmoa032867. 2. Neeltje van Doremalen, V. J. M., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., & de Wit, E. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 382, 1564–1567. DOI: 10.1056/NEJMc2004973. 3. Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int., 139, 105730. DOI: 10.1016/j.envint.2020.105730. 4. Morawska, L., Johnson, G. R., Ristovski, Z. D., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C. Y. H., Katoshevski, Y., & Li, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci., 40, 256–269. DOI: 10.1016/j.jaerosci.2008.11.002. 5. The Polish Committee for Standardization. (2010). Respiratory protective devices. Filtering half masks to protect against particles. Requirements, testing, marking. PN-EN 149+A1:2010 (in Polish).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|