Deep Learning Measurement Model to Segment the Nuchal Translucency Region for the Early Identification of Down Syndrome

Author:

Thomas Mary Christeena1,Arjunan Sridhar P.1

Affiliation:

1. Department of Electronics and Instrumentation , SRM Institute of Science and Technology Kattankulathur , India

Abstract

Abstract Down syndrome (DS) or Trisomy 21 is a genetic disorder that causes intellectual and mental disability in fetuses. The most essential marker for detecting DS during the first trimester of pregnancy is nuchal translucency (NT). Effective segmentation of the NT contour from the ultrasound (US) images becomes challenging due to the presence of speckle noise and weak edges. This study presents a Convolutional Neural Network (CNN) based SegNet model using a Visual Geometry Group (VGG-16) for semantically segmenting the NT region from the US fetal images and providing a fast and affordable diagnosis during the early stages of gestation. A transfer learning approach using AlexNet is implemented to train the NT segmented regions for the identification of DS. The proposed model achieved a Jaccard index of 0.96 and classification accuracy of 91.7 %, sensitivity of 85.7 %, and a Receiver operating characteristic (ROC) of 0.95.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

Reference24 articles.

1. [1] Asim, A., Kumar, A., Muthuswamy, S., Jain, S., Agarwal, S. (2015). Down syndrome: An insight of the disease. Journal of Biomedical Science, 22 (1), 41. https://dx.doi.org/10.1186%2Fs12929-015-0138-y10.1186/s12929-015-0138-y446463326062604

2. [2] Nicolaides, K.H., Brizot, M.L., Snijders, R.J. (1994). Fetal nuchal translucency: Ultrasound screening for fetal trisomy in the first trimester of pregnancy. British Journal of Obstetrics and Gynecology, 101, 782-786. https://doi.org/10.1111/j.1471-0528.1994.tb11946.x10.1111/j.1471-0528.1994.tb11946.x7947527

3. [3] Sciortino, G., Tegolo, D., Valenti, C. (2017). A non-supervised approach to locate and to measure the nuchal translucency by means of wavelet analysis and neural networks. In 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT). IEEE, 1-7. https://doi.org/10.1109/ICAT.2017.817163110.1109/ICAT.2017.8171631

4. [4] Müller, M.A., Pajkrt, E., Bleker, O.P., Bonsel, G.J., Bilardo, C.M. (2004). Disappearance of enlarged nuchal translucency before 14 weeks’ gestation: Relationship with chromosomal abnormalities and pregnancy outcome. Ultrasound in Obstetrics & Gynecology, 24 (2), 169-174. https://doi.org/10.1002/uog.110310.1002/uog.110315287055

5. [5] Wright, D., Kagan, K.O., Molina, F.S., Gazzoni, A., Nicolaides, K.H. (2008) A mixture model of nuchal translucency thickness in screening for chromosomal defects. Ultrasound in Obstetrics & Gynecology, 31 (4), 376-383. https://doi.org/10.1002/uog.529910.1002/uog.529918383462

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3