Author:
Banakh Taras,Kholyavka Yaroslav,Potyatynyk Oles,Machura Michał,Kuhlmann Katarzyna
Abstract
AbstractWe prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.
Reference17 articles.
1. Banakh T., Potyatynyk O., Dimension of graphoids of rational vector-functions, Topology Appl., 2013, 160(1), 24–44
2. Becker E., Gondard D., Notes on the space of real places of a formally real field, In: Real Analytic and Algebraic Geometry, Trento, September 21–25, 1992, de Gruyter, Berlin, 1995, 21–46
3. Ergeb. Math. Grenzgeb.;J Bochnak,1998
4. Brown R., Real places and ordered fields, Rocky Mountain J. Math., 1971, 1(4), 633–636
5. Coste M., Real algebraic sets, available at http://perso.univ-rennes1.fr/michel.coste/polyens/RASroot.pdf
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献