1. Bruckner A.M., Density-preserving homeomorphisms and a theorem of Maximoff, Quart. J. Math. Oxford, 1970, 21(3), 337–347
2. Ciesielski K., Larson L., Ostaszewski K., % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqr1ngBPrgifHhDYfgasaacH8srps0lbbf9q8 % WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-J % bba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaae % qabaWaaqaafaaakeaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgi % p5wzaGGbaiab-brijbaa!470B! $$ \mathcal{I} $$ -Density Continuous Functions, Mem. Amer. Math. Soc., 1994, 107(515)
3. Głab S., Descriptive properties of families of autohomeomorphisms of the unit interval, J. Math. Anal. Appl., 2008, 343(2), 835–841
4. Kechris A.S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995
5. Niewiarowski J., Density-preserving homeomorphisms, Fund. Math., 1980, 106(2), 77–87