Comments on the height reducing property

Author:

Akiyama Shigeki,Zaimi Toufik

Abstract

AbstractA complex number α is said to satisfy the height reducing property if there is a finite subset, say F, of the ring ℤ of the rational integers such that ℤ[α] = F[α]. This property has been considered by several authors, especially in contexts related to self affine tilings and expansions of real numbers in non-integer bases. We prove that a number satisfying the height reducing property, is an algebraic number whose conjugates, over the field of the rationals, are all of modulus one, or all of modulus greater than one. Expecting the converse of the last statement is true, we show some theoretical and experimental results, which support this conjecture.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference14 articles.

1. Akiyama S., Borbély T., Brunotte H., Peth"o A., Thuswaldner J.M., Generalized radix representations and dynamical systems. I, Acta Math. Hungar., 2005, 108(3), 207–238

2. Akiyama S., Drungilas P., Jankauskas J., Height reducing problem on algebraic integers, Funct. Approx. Comment. Math., 2012, 47(1), 105–119

3. Akiyama S., Scheicher K., From number systems to shift radix systems, Nihonkai Math. J., 2005, 16(2), 95–106

4. Baker A., The theory of linear forms in logarithms, In: Transcendence Theory: Advances and Applications, Cambridge, January–February, 1976, Academic Press, London, 1977, 1–27

5. Baker A., Wüstholz G., Logarithmic forms and group varieties, J. Reine Angew. Math., 1993, 442, 19–62

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rational matrix digit systems;Linear and Multilinear Algebra;2022-05-07

2. Characterization of rational matrices that admit finite digit representations;Linear Algebra and its Applications;2018-11

3. MINIMAL NON-INTEGER ALPHABETS ALLOWING PARALLEL ADDITION;Acta Polytechnica;2018-10-31

4. On distinct unit generated fields that are totally complex;Journal of Number Theory;2015-03

5. Comments on the height reducing property II;Indagationes Mathematicae;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3