Author:
Hou Zhi,Luo Li,Liu Chun,Wang Yuan,Dai Li
Abstract
AbstractThe reaction between caprolactam and ethanol was performed in near-critical water. The primary product (ethyl-6-aminohexanoate) was identified by GC-MS. The influences of the reaction temperature, residence time, initial ratio (reactant/water), pH, and additives on the yields of ethyl-6-aminohexanoate are discussed. The results showed that the yield of ethyl-6-aminohexanoate could be as high as 98 % with SnCl2 as an additive in near-critical water. At the same time, the reaction between caprolactam and ethanol was estimated by a lumped kinetic equation as a second-order reaction in near-critical water, and the activation energy was evaluated according to the Arrhenius equation under acidic and basic conditions. Based on the results, the reaction mechanism between caprolactam and ethanol in near-critical water is proposed.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献