A Bayesian Information System for Predicting Stator Faults in Induction Machines

Author:

Ramdane Ahmed1,Lakehal Abdelaziz2,Kelaiaia Ridha1,Saad Salah3

Affiliation:

1. Faculty of Technology , Université 20 août 1955-Skikda , PB N°26 Route Elhadaik, Skikda , 21000 , Algeria

2. Department of Mechanical Engineering , Mohamed Chérif Messaadia University , P.O. Box 1553, Souk-Ahras , 41000 , Algeria

3. Laboratoire Systèmes Electromécaniques (LSELM), University of Badji-Mokhtar Annaba , 23000 , Algeria

Abstract

Abstract The approach adopted in this paper focuses on the faults prediction in asynchronous machines. The main goal is to explore interesting information regarding the diagnosis and prediction of electrical machines failures by the use of a Bayesian graphical model. The Bayesian forecasting model developed in this paper provides a posteriori probability for faults in each hierarchical level related to the breakdowns process. It has the advantage that it can give needed information’s for maintenance planning. A real industrial case study is presented in which the maintenance staff expertise has been used to identify the structure of the Bayesian network and completed by the parameters definition of the Bayesian network using historical file data of an induction motor. The robustness of the proposed methodology has also been tested. The results showed that the Bayesian network can be used for safety, reliability and planning applications.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3