Electrophysiological Recordings on a Sounding Rocket: Report of a First Attempt Using Xenopus laevis Oocytes

Author:

Wuest Simon L.12,Plüss Tobias1,Hardegger Christoph1,Felder Mario1,Kunz Aaron1,Fleischli Benno1,Komotar Carlos1,Rüdlinger Lukas1,Albisser Andreas1,Gisler Thomas1,Frauchiger Daniela A.2,Egli Marcel1

Affiliation:

1. Lucerne School of Engineering and Architecture , Lucerne University of Applied Sciences and Arts , Horw , Switzerland

2. Institute for Surgical Technology & Biomechanics , University of Bern , Bern , Switzerland

Abstract

Abstract It is not fully understood how cells detect external mechanical forces, but mechanosensitive ion channels play important roles in detecting and translating physical forces into biological responses (mechanotransduction). With the “OoClamp” device, we developed a tool to study electrophysiological processes, including the gating properties of ion channels under various gravity conditions. The “OoClamp” device uses an adapted patch clamp technique and is operational during parabolic flight and centrifugation up to 20 g. In the framework of the REXUS/BEXUS program, we have further developed the “OoClamp” device with the goal of conducting electrophysiological experiments aboard a flying sounding rocket. The aim of such an experiment was first to assess whether electrophysiological measurements of Xenopus laevis oocytes can be performed on sounding rocket flights, something that has never been done before. Second, we aimed to examine the gating properties of ion channels under microgravity conditions. The experiment was conducted in March 2016 on the REXUS 20 rocket. The post-flight analysis showed that all recording chambers were empty as the rocket reached the microgravity phase. A closer analysis of the flight data revealed that the oocytes were ripped apart a few seconds after the rocket launch. This first attempt at using sounding rockets as a research platform for electrophysiological recordings was therefore limited. Our modified “OoClamp” hardware was able to perform the necessary tasks for difficult electrophysiological recordings aboard a sounding rocket; however, the physical stresses during launch (acceleration and vibrations) did not support viability of Xenopus oocytes.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3