Improving sensitivity in the deep regions of a volume conductor using electrical focused impedance methods

Author:

Mobarak Mahjabin1,Rabbani K Siddique-e2

Affiliation:

1. Southeast University , Dhaka , Bangladesh

2. Department of Biomedical Physics and Technology, University of Dhaka , Dhaka , Bangladesh

Abstract

Abstract Bioimpedance measurements are becoming important in probing the human body for diagnosis and monitoring. An age old 4-electrode technique called tetrapolar impedance measurement (TPIM), giving transfer impedance, cannot localize a specific zone besides having large zones of negative sensitivity. A new technique named the focused impedance method (FIM) from Dhaka University (DU), Bangladesh used the algebraic average of two concentric and orthogonal TPIMs, localizing a zone of interest and having reduced magnitudes of negative sensitivity. Earlier, this was implemented with electrodes applied from one side of the human body giving information to shallow depths only. To get information from deeper regions, specifically, of the thorax, the same DU group placed two electrodes of a 4-electrode version of FIM at the front and two at the back in a horizontal plane of the thorax, using physics-based visualization. This was followed by a few quantitative studies using point sensitivity, which supported the concept. However, more quantitative studies still need to be performed, particularly using objects of finite sizes, in order to establish the technique on a stronger footing. The present study was taken up with this objective. A simplified approach was used in which the volume conductor was a rectangular non-conducting container filled with saline of uniform conductivity with an embedded spherical object – first an insulator and then a conductor. Electrodes were placed at specific chosen positions following the above visualization. Percentage change in transfer impedance with the object placed at different internal positions, compared to that without the object was obtained first using COMSOL simulation and then through experimental measurements. These were performed for both TPIM and FIM. The new configuration of 4-electrode FIM gave good depth sensitivity supporting the effectiveness of the new placement of electrodes.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3