Non-Archimedean Koksma Inequalities, Variation, and Fourier Analysis

Author:

Petsche Clayton1,Somasunderam Naveen2

Affiliation:

1. Oregon State University , Corvallis , USA

2. SUNY Plattsburgh , Plattsburgh , USA

Abstract

Abstract We examine four different notions of variation for real-valued functions defined on the compact ring of integers of a non-Archimedean local field, with an emphasis on regularity properties of functions with finite variation, and on establishing non-Archimedean Koksma inequalities. The first version of variation is due to Taibleson, the second due to Beer, and the remaining two are new. Taibleson variation is the simplest of these, but it is a coarse measure of irregularity and it does not admit a Koksma inequality. Beer variation can be used to prove a Koksma inequality, but it is order-dependent and not translation invariant. We define a new version of variation which may be interpreted as the graph-theoretic variation when a function is naturally extended to a certain subtree of the Berkovich affine line. This variation is order-free and translation invariant, and it admits a Koksma inequality which, for a certain natural family of examples, is always sharper than Beer’s. Finally, we define a Fourier-analytic variation and a corresponding Koksma inequality which is sometimes sharper than the Berkovich-analytic inequality.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference11 articles.

1. [1] BAKER, M.—RUMELY, R.: Potential Theory and Dynamics on the Berkovich Projective Line.In: Math. Surveys and Monogr. Vol. 159, Amer.Math. Soc., Providence, RI, 2010.

2. [2] BEER, S.: Zur Theorie der Gleichverteilung im p-adischen,Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II, 176 (1967/68), 499–519.

3. [3] BERKOVICH, V. G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields,In: Math. Surveys and Monogr. Vol. 33, Amer. Math. Soc., Providence, RI, 1990.

4. [4] DASGUPTA, S.—TEITELBAUM, J.: The p-adic upper half plane. p-adic Geometry. In: Univ. Lecture Ser. Vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 65–121.

5. [5] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences.In: Pure and Applied Mathematics. Vol. 14, John Wiley & Sons, a Wiley-Interscience Publication. New York-London-Sydney, 1974.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3