Osteoinductive potential of small intestinal submucosa/ demineralized bone matrix as composite scaffolds for bone tissue engineering

Author:

Honsawek Sittisak1,Bumrungpanichthaworn Piyanuch1,Thanakit Voranuch2,Kunrangseesomboon Vachiraporn3,Muchmee Supamongkon3,Ratprasert Siriwimon3,Tangchainavaphum Pruksapon3,Dechprapatsorn Saran3,Ratprasert Siriwimon3,Suksamran Apasri3,Rojchanawatsirivech Apimit3

Affiliation:

1. Department of Biochemistry,Chulalongkorn University, Bangkok 10330, Thailand

2. Department of Pathology,Chulalongkorn University, Bangkok 10330, Thailand

3. Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Abstract Background: Demineralized bone matrix (DBM) is extensively used in orthopedic, periodontal, and maxillofacial application and investigated as a material to induce new bone formation. Small intestinal submucosa (SIS) derived from the submucosa layer of porcine intestine has widely utilized as biomaterial with minimum immune response. Objectives: Determine the osteoinductive potential of SIS, DBM, SIS/DBM composites in the in vitro cell culture and in vivo animal bioassays for bone tissue engineering. Materials and methods: Human periosteal (HPO) cells were treated in the absence or presence SIS, DBM, and SIS/DBM. Cell proliferation was examined by direct cell counting. Osteoblast differentiation of the HPO cells was analyzed with alkaline phosphatase activity assay. The Wistar rat muscle implant model was used to evaluate the osteoinductive potential of SIS, DBM, and SIS/DBM composites. Results: HPO cells could differentiate along osteogenic lineage when treated with either DBM or SIS/DBM. SIS/ DBM had a tendency to promote more cellular proliferation and osteoblast differentiation than the other treatments. In Wistar rat bioassay, SIS showed no new bone formation and the implants were surrounded by fibrous tissues. DBM demonstrated new bone formation along the edge of old DBM particles. SIS/DBM composite exhibited high osteoinductivity, and the residual SIS/DBM was surrounded by osteoid-like matrix and newly formed bone. Conclusion: DBM and SIS/DBM composites could retain their osteoinductive capability. SIS/DBM scaffolds may provide an alternative approach for bone tissue engineering.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3