Author:
Dou Chun-Sheng,Li Di,Wang Can-Jun
Abstract
AbstractThe dynamical properties of a noise-driven tumor cell growth system are investigated when there exist two different kinds of time delays, in the deterministic and fluctuating forces, respectively. Using the approximation probability density approach, the delayed Fokker-Planck equation is obtained. The effects of two different time delays on the stationary probability distribution (SPD), the mean value and the mean passage time (MFPT) are discussed. It is found that the time delay τ1 in the deterministic force can enhance tumor cell number, while the time delay τ2 in the fluctuating force can induce a decrease in tumor cell numbers. On the other hand, while τ1 can hold back the extinction of tumor cells, τ2 can speed up their extinction.
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献