Magnetic properties of the mixed spin-5/2 and spin-3/2 Blume-Capel Ising system on the two-fold Cayley tree

Author:

Yessoufou Rachidi,Amoussa Saliou,Hontinfinde Felix

Abstract

AbstractWe use exact recursion relations to study the magnetic properties of the half-integer mixed spin-5/2 and spin-3/2 Blume-Capel Ising ferromagnetic system on the two-fold Cayley tree that consists of two sublattices A and B. Two positive crystal-field interactions Δ1 and Δ2 are considered for the sublattice with spin-5/2 and spin-3/2 respectively. For different coordination numbers q of the Cayley tree sites, the phase diagrams of the model are presented with a special emphasis on the case q = 3, since other values of q reproduce similar results. First, the T = 0 phase diagram is illustrated in the (D A = Δ1/J,D B = Δ2/J) plane of reduced crystal-field interactions. This diagram shows triple points and coexistence lines between thermodynamically stable phases. Secondly, the thermal variation of the magnetization belonging to each sublattice for some coordination numbers q are investigated as well as the Helmoltz free energy of the system. First-order and second-order phase transitions are found. The second-order phase transitions become sharper and sharper when D A or D B increases. The first-order transitions only exist for some appropriate non-zero values of D A and/or D B. The corresponding transition lines never connect to the second-order transition lines. Thus, the non-existence of tricritical points remains one of the key features of the present model. The magnetic exponent β 0 of the model is estimated and found to be ¼ at small values of D A = D B = D and β 0 = ½ at large values of D. At intermediate values of D, there is a crossover region where the magnetic exponent displays interesting behaviours.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3