On Functions of Bounded (φ, k)-Variation

Author:

Leiva Hugo1,Merentes Nelson2,Rivas Sergio T.2,Sánchez José2,Wróbel Małgorzata3

Affiliation:

1. Universidad de los Andes , Mérida , Venezuela

2. Universidad Central de Venezuela , Caracas , Venezuela

3. Czestochowa University of Technology , Częstochowa , Poland

Abstract

Abstract Given a φ-function φ and k ∈ ℕ, we introduce and study the concept of (φ, k)-variation in the sense of Riesz of a real function on a compact interval. We show that a function u :[a, b] ℝ has a bounded (φ, k)-variation if and only if u ( k− 1) is absolutely continuous on [a, b]and u ( k ) belongs to the Orlicz class L φ [a, b]. We also show that the space generated by this class of functions is a Banach space. Our approach simultaneously generalizes the concepts of the Riesz φ-variation, the de la Vallée Poussin second-variation and the Popoviciu kth variation.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference19 articles.

1. [1] DE BOOR, C.: Divided differences, Surv. Approx. Theory 1 (2005), 46–69.

2. [2] DIRICHLET, P. L.: Sur la convergence des séries trigonométriques que servent àreprésenter une fonction arbitraire entre des limites donnés,J.Reine Angew. Math. 4 (1829), 157–159.

3. [3] DE LA VALLÉE POUSSIN, CH.-J.: Sur la convergence des formules d’interpolation entre ordennées equidistantes, Acad. Roy. Belg. Bull. Cl. Sci. 4 (1908), 319–410.

4. [4] FOURIER, J.: Mémories sur la propagation de la chaleur dans les corpes solides Extrait, Nouveau Bull. Sci. Soc. Philom. Paris 1 (1808), 112–116.

5. [5] ISAACSON, E.—KELLER, B.: Analysis of Numerical Methods. John Wiley & Sons, New York, 1966.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3