Evaluating the Performance of wav2vec Embedding for Parkinson's Disease Detection

Author:

Klempíř Ondřej1,Příhoda David2,Krupička Radim1

Affiliation:

1. 1 Department of Biomedical Informatics, Faculty of Biomedical Engineering , Czech Technical University in Prague , nám. Sítná, 3105, 272 01 , Kladno , Czech Republic

2. 2 Department of Informatics and Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology , Technicka, 5, 160 00, Prague , Czech Republic

Abstract

Abstract Speech is one of the most serious manifestations of Parkinson's disease (PD). Sophisticated language/speech models have already demonstrated impressive performance on a variety of tasks, including classification. By analysing large amounts of data from a given setting, these models can identify patterns that would be difficult for clinicians to detect. We focus on evaluating the performance of a large self-supervised speech representation model, wav2vec, for PD classification. Based on the computed wav2vec embedding for each available speech signal, we calculated two sets of 512 derived features, wav2vec-sum and wav2vec-mean. Unlike traditional signal processing methods, this approach can learn a suitable representation of the signal directly from the data without requiring manual or hand-crafted feature extraction. Using an ensemble random forest classifier, we evaluated the embedding-based features on three different healthy vs. PD datasets (participants rhythmically repeat syllables /pa/, Italian dataset and English dataset). The obtained results showed that the wav2vec signal representation was accurate, with a minimum area under the receiver operating characteristic curve (AUROC) of 0.77 for the /pa/ task and the best AUROC of 0.98 for the Italian speech classification. The findings highlight the potential of the generalisability of the wav2vec features and the performance of these features in the cross-database scenarios.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3