Evaluation of genetic variation among maize inbred lines for salinity stress at seedling stage through salt-stress-responsive traits

Author:

Zaidi Farrah1,Shahzad Ali12,Ahsan Muhammad3,Gul Hameed2,Shahzad Muhammad1,Gul Shareef2,Mohamed Soufiane4

Affiliation:

1. Department of Botany , University of Agriculture Faisalabad , Faisalabad , Pakistan

2. College of Agronomy and Biotechnology , Southwest University , Beibei, Chongqing 400715 , China

3. Department of Plant Breeding and Genetics , University of Agriculture Faisalabad , Faisalabad , Pakistan

4. College of Resources and Environmental Sciences , Southwest University , China

Abstract

Abstract Saline conditions affect plant development and significantly reduce its yield. Maize (Zea mays) is the one of main cash crops in Pakistan, and unfavourable saline conditions are among the core reasons for its reduced productivity, especially in arid and semi-arid regions. The identification of potential genotypes is essential for genetic modifications. By considering this situation, the current experiment was conducted to evaluate the inbred maize lines under different salinity levels. We evaluated ten maize inbred maize lines at seedling stage under three salinity levels (0 mM, 75 mM, and 125 mM NaCl). The highly significant (p ≤ 0.001) differences in inbred lines, salinity levels, and in their interaction were revealed by analysis of variance results for most of the traits. The results indicated that inbred lines D-135 and NCIL-20-4 performed better under saline conditions. Our results showed that salinity severely affects seedling growth. Accordingly, a significant decline was observed in root length, shoot length, root weight, and shoot weight, and these traits offered the maximum values for heritability and genetic advance. From the correlation and path coefficient analysis, it has been concluded that root length, shoot length, fresh root weight, and root density are the traits that can be beneficial for the identification of better germplasms under saline conditions and that are helpful for improving tolerance against saline conditions.

Publisher

Walter de Gruyter GmbH

Reference79 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3