Affiliation:
1. Department of Animal science, Faculty of Agriculture , Bu-Ali Sina University , Hamedan , Iran
2. Department of Animal Science, Campus of Agriculture and Natural Resources , University of Tehran , Karaj , Tehran, Iran
Abstract
Abstract
The objective of the present study was to investigate dose-response effects of the essential oil (EO) and dry extract (EX) of Satureja khuzistanica (SK) on in vitro gas production kinetics, rumen fermentation, ruminal methanogenesis and microbial protein synthesis. So, EO and EX were tested at 0 (as control); 150 (low dose); 300, 450 (intermediate doses) and 600 mg/L (high dose). The gas produced over 24 h of incubation (GP24) decreased linearly with both EO and EX dosages (P<0.01). In vitro methane production was reduced by both EO (14–69%, depending on the included dose) and EX (7–58%). Microbial protein (MP) as well as the efficiency of microbial protein synthesis (EMPS) were improved by EO (18.8–49.8% and 20.4–61.5% for MP and EMPS, respectively) and to a lesser extent by EX (8.3–25.7% and 4.6–24.2% for MP and EMPS, respectively). Ammonia concentration was dropped in linear and quadratic manners with EO (P<0.05), and linearly with EX dosages (P<0.01). EO and EX exhibited depressive effects (in linear and quadratic (P<0.05), and linear manners (P<0.01), respectively) on total protozoa count. A mixed linear and quadratic effect was observed from both EO and EX on total VFA concentration (P<0.01). Total VFA concentration increased at 300 mg/L of EX, but decreased at high dose of both EO and EX. The acetate proportion increased with EO intermediate and high dosages, but it decreased at the expense of propionate at low and intermediate doses of EX. In total, these findings confirmed previous research on the great capacity of plant-based feed additives in positively modulating rumen fermentation that their effects may vary depending on the used doses. Specifically, these results suggest that EO and EX have high potentials to improve rumen functions at intermediate doses, which needs to be confirmed by in vivo experiments.
Reference89 articles.
1. Abbasi A., Maddah S.M., Mahboubi A., Khaledi A., Vazini H., Esmaeili D. (2017). Investigate the inhibitory effects of Satureja khuzestanica essential oil against housekeeping fabD and exoA genes of Pseudomonas aeruginosa from hospital isolates using RT-PCR technique. Ann. Med. Health Sci. Res., 7: 246–250.
2. Adams R.P., (2007). Identification of essential oil components by gas chromatography/ mass spectroscopy, Allured Publishing Corporation, Illinois.
3. AOAC (2000). Official Methods of Analysis. Association of Official Analytical Chemists (AOAC). VA, USA, Arlington, 17th ed.
4. Belanche A., De la Fuente G., Pinloche E., Newbold C.J., Balcells J. (2012). Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J. Anim. Sci., 90: 3924–3936.
5. Benchaar C., Chaves A., Fraser G., Beauchemin K., McAllister T. (2007). Effects of essential oils and their components on in vitro rumen microbial fermentation. Can. J. Anim. Sci., 87: 413–419.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献