Affiliation:
1. Department of Mathematics , Chittagong University of Engineering and Technology , Chittagong - 4349 , Bangladesh
2. Department of Mathematics , Dhaka University of Engineering and Technology , Dhaka - 1000 , Bangladesh
Abstract
Abstract
In the present work, the effect of various dimensionless parameters on the momentum, thermal and concentration boundary layer are analyzed. In this respect we have considered the MHD boundary layer flow of heat and transfer over a porous wedge surface in a nanofluid. The governing partial differential equations are converted into ordinary differential equations by using the similarity transformation. These ordinary differential equations are numerically solved using fourth order Runge–Kutta method along with shooting technique. The present results have been shown in a graphical and also in tabular form. The results indicate that the momentum boundary layer thickness reduces with increasing values of the pressure gradient parameter β for different situations and also for the magnetic parameter M but increases for the velocity ratio parameter λ and permeability parameter K*. The heat transfer rate increases for the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Prandtl number Pr but opposite result is found for the increasing values of the thermoporesis parameter Nt. The nanoparticle concentration rate increases with an increase in the pressure gradient parameter β, velocity ratio parameter λ, Brownian motion parameter Nb and Lewis number Le, but decreases for the thermoporesis parameter Nt. Finally, the numerical results has compared with previously published studies and found to be in good agreement. So the validity of our results is ensured.
Subject
Fluid Flow and Transfer Processes,Transportation,Civil and Structural Engineering
Reference26 articles.
1. [1] Seddeek M.A., Afify A.A. and Al-Hanaya A.M. (2009): Similarity Solutions for a Steady MHD Falkner-Skan flow and heat transfer over a wedge considering the effects of variable viscosity and thermal conductivity. – Applications and Applied Mathematics, vol.4, pp.303-313.
2. [2] Michael M.J. and Boyd D.I. (2010): Falkner-Skan flow over a wedge with slip boundary conditions. – Journal of Thermo Physics and Heat Transfer, vol.24, pp.263-270.
3. [3] Yacob A.N., Ishak A. and Pop I. (2011): Falkner-Skan problem for a static or moving wedge in nanofluids. – International Journal of Thermal Science, vol.50, pp.133-139.
4. [4] Hayat T., Majid H., Nadeem S. Meslou (2011): Falkner-Skan wedge flow of a power-law fluid with mixed convection and porous medium. – Computers and Fluids, vol.49, pp.22-28.
5. [5] Ashwini G. and Eswara A.T. (2015): Unsteady MHD accelerating flow past a wedge with thermal radiation and internal heat generation/absorption. – International Journal of Mathematics and Computational Science, vol.1, pp.13-26.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献