Effect of Time History on Long-Term Deformation of Gypseous Soils

Author:

Fattah Mohammed Y.1,Al-Shakarchi Yousif J.2,Al-Numani Huda N.3

Affiliation:

1. Building and Construction Engineering Department , University of Technology , Baghdad , Iraq

2. Civil Engineering Department , College of Engineering , University of Baghdad , Iraq

3. Civil Engineering Department , College of Engineering , University of Kufa , Iraq

Abstract

Abstract The time-dependent behavior of three gypseous soils was investigated. The soils had gypsum content of 66%, 44%, and 14.8%. The mineralogical and chemical properties of the soils were determined. Two series of tests were performed. In the first, collapsibility characteristics were investigated for a long period (60 days) by conducting single and double oedometer tests. In the second series, the effect of relative density on collapse with time was investigated. The samples were compacted to 40%, 50%, and 60% relative density and then tested. The results of collapse tests showed that the relationship between the strain and logarithm of effective stress has two vertical lines. The first one represents the collapse settlement taking place within 24 h, while the second one represents the long-term collapse. The collapse potential (CP) in both single and double oedometer tests increases when the gypsum content increases from 14.8% to 66% and when the initial void ratio increases. The CP–logarithm of time relationship for soaked samples prepared at different relative densities under 800 kPa indicated that the CP increased with time for the soil sample compacted at 60% relative density and the increase was higher than those compacted at 40% and 50% relative density. The curves started with a straight line and then a concave downward curve was observed with a high strain. For samples compacted at 40% and 50% relative densities, the curves were interrupted by little soil collapses, while the third curve exhibited smooth relation following the collapse.

Publisher

Walter de Gruyter GmbH

Subject

Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference31 articles.

1. Al-Aithawi, A.H. (1990), “Time-Dependent Deformation of a Gypseous Silty Soil”, M.Sc. Thesis, Civil Engineering Department, University of Baghdad, Iraq.

2. Al-Obaidi, A. A. H., Mohammed, S. M., (2017), “Estimate of Bearing Capacity of Gypseous Soils from Field Data”, Diyala Journal of Engineering Sciences, Vol. 10, No. 01, pp. 1–20.

3. Al-Aqaby, M.D., (2001), “Effect of Kerosene on Properties of Gypseous Soil”, M.Sc. Thesis, Civil Engineering Department, University of Baghdad, Iraq.

4. Aldaood, A., Bouasker, M., and Al-Mukhtar, M. (2013), “Stability Behavior of Lime Stabilized Gypseous Soil under Long-Term Soaking. IACGE 2013 : Challenges and Recent Advances in Geotechnical and Seismic Research and Practices GSP 232, Second International Conference on Geotechnical and Earthquake Engineering, Chengdu, China, October 25–27, 2013, Edited by Jianping Hu; Jianlin Ma; Jorge Meneses; Tong Qui; Xiong (Bill) Yu; and Xiangwu (David) Zeng, pp. 170–177. doi: 10.1061/9780784413128.021.

5. Alphen, J. G. and Romero, F. D. R. (1971), “Gypsiferous Soils: Notes on their Characteristics and Management. International Institute for Land Reclamation and Improvement”, Wageningen, Netherlands, Bulletin 12.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of shear strength characteristics of the unsaturated gypseous soil at various saturation degrees;Cogent Engineering;2023-11-20

2. Examining the Creep Characteristics of Basalt Fiber–Reinforced Polymer Grouted Bolts in Mixed Soil;International Journal of Geomechanics;2023-10

3. Mechanical characterization of a gypseous soil: experimental and numerical studies;Innovative Infrastructure Solutions;2023-08-24

4. Study on the Dynamic Characteristics of Loess;Sustainability;2023-03-19

5. Arid soils;ICE Manual of Geotechnical Engineering, Second edition, Volume I;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3