Affiliation:
1. Geomaterials Laboratory , Hassiba Benbouali University of Chlef , Algeria
2. Civil Engineering Department , University of Sakarya , Turkey
Abstract
Abstract
The aim of this study is to consider the effects of the variation of shear modulus ratio (G/G
0
) and damping ratio (ξ) of soil, obtained by a linear iterative method based on the design spectra of seismic codes, the soil environment in terms of uncertainties in shear modulus using Monte Carlo simulations and the foundation damping (ξ
f
) of flexible base for analyses of the Soil-Structure Interaction (SSI) problems. A squat structure with circular shallow foundation resting on a soil layer over a homogeneous half-space is studied by using cone model and considering seismic zone effect on structural response. Firstly, after showing the effects of the correction of G and ξ on impedance functions and the responses of soil-foundation-structure system, a study is carried out to compare these effects to those of the modelling of uncertainties in shear modulus as random variations. Secondly, a comparative analysis on design response spectra and base shear forces was carried out for four seismic codes (Algerian Seismic Rules RPA99-2003, Eurocode 8–2004, International Building Code IBC-2015 and Indian Code IS-1893-2002) considering the three cases of SSI: SSI effects (initial G and ξ), nonlinear SSI (corrected G and ξ) and stochastic SSI (random G with COV = 20%) compared to the fixed base case. Results show that the correction of G and ξ, according to the equivalent nonlinear method in all the cases, leads to a remarkable decrease in peak responses but show a huge amount of reduction in the second study for IBC-2015 and IS-1893-2002 codes compared to the other codes.
Subject
Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Reference66 articles.
1. Çelebi, E., Goktepe, F., Karahan, N. (2012). Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction. Natural hazards and earth system science, 12: 3495–3505.
2. Farghaly, A.A., Ahmed, H.H. (2013). Contribution of soil-structure interaction to seismic response of buildings. Geotechnical engineering, 17(5): 959–971.
3. Park, J.H., Choo, J.F., Cho, J.R. (2013). Dynamic soil-structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modeling approach. Structural engineering, 17(4): 753–762.
4. Jia, J. (2018). Soil dynamics and foundation modeling, offshore and earthquake engineering Springer nature, Bergen, Norway.
5. EC8-2004 (English): Eurocode 8: Design of Structures for Earthquake Resistance. Part 5 : Foundation, retaining structures and geotechnical aspects.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献