Energy Management Strategy with Regenerative-Breaking Recovery of Mixed Storage Systems for Electric Vehicles

Author:

Fouad Zebiri1ORCID,Elhak Benhenich Abd2,Elhakim Deboucha Add3,Abdelhalim Kessal1

Affiliation:

1. ULPMRN Laboratory , Faculty of Sciences & Technology, University Mohammed El Bachir El Ibrahimi of Bordj Bou Arreridj , Algeria .

2. Faculty of Sciences & Technology , Bordj Bou Arreridj University , Algeria

3. Laboratory of Applied Sciences , Ecole National Superieure des Technologies Avancées , Algeria

Abstract

Abstract The present paper addresses the energy management (EM) strategy between batteries and ultracapacitors (UCs) in a dual-propulsion urban electric vehicle (EV). The use of two propulsion machines proves advantageous for high-performance EVs facing spatial constraints. Allocating load power requirements among the propulsion machines and energy storage components poses a significant challenge in this design. In this paper, the control strategy presents managing the energy flow between the converters and the two brushless DC motors (BLDCs) motors via the DC link in order to maintain the energy demand of the EV coming from the dynamics of the latter. For this, power control is carried out by a management algorithm. This management is based on the power requested/generated by the two machines (BLDCs), the state of charge of the batteries (SOCBat) and the state of charge of the ultracapacitors (SOCUC). The bidirectional DC-DC converter is controlled with current to ensure the functioning of the motor or the generator of the vehicle. We also integrate the controls of the DC bus and BLDC. Additionally, the recovered energy during braking is stored in the battery or in the UC depending on the operating conditions.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3