Determination of the Topography-Bounded Atmospheric Gravity Correction for the Area of Poland

Author:

Trojanowicz Marek1,Kasprzak Monika1,Jaworska Karolina1

Affiliation:

1. Institute of Geodesy and Geoinformatics , Wroclaw University of Environmental and Life Sciences , C. K. Norwida 25 , Wroclaw , Poland

Abstract

Abstract The standard recommended atmospheric gravity correction is based on the International Association of Geodesy (IAG) approach. This correction introduced into the results of gravimetric measurements reduces, in a simplified way, the influence of the actual atmospheric masses and the atmospheric masses contained inside a reference ellipsoid from the determined gravity anomalies or disturbances. Model of the actual atmosphere used in the IAG approach does not take into account topography as the lower boundary of the atmosphere, assuming that the atmosphere consists of spherical, constant density layers. In this study, we determined and analysed the components of atmospheric gravity correction for the area of Poland and its surroundings, considering topography as the lower limit of the atmosphere. In the calculations, we used algorithms typical for determining the topographic gravity reduction, assuming a model of atmospheric density based on the United States Standard Atmosphere 1976 model. The topography-bounded gravity atmospheric correction values determined were within the limits of 0.748–0.886 mGal and were different from standard, approximate atmospheric correction values in the range of 0.011 mGal for points at the sea level up to 0.105 mGal for points located at an altitude of approximately 2600 m.

Publisher

Walter de Gruyter GmbH

Reference23 articles.

1. Anderson E. G. (1976) The effect of topography on solutions of Stokes’s problem. UNISURV Report S14, University of New South Wales, Kensington, Australia.

2. Anderson E. G., Rizos C., Mather R. S. (1975) Atmospheric effects in physical geodesy. UNISURV Report G23, University of New South Wales, Kensington, Australia.

3. Ecker E., Mittermayer E. (1969) Gravity corrections for the influence of the atmosphere. Bulletin of Theoretical and Applied Geophysics 11, 70−80.

4. Heck B., Seitz K. (2007) A comparison of the tesseroid, prism and pointmass approaches for mass reductions in gravity field modelling. Journal of Geodesy 81(2), 121–136.

5. Hinze W. J., Aiken C., Brozena J., Coakley B., Dater D., Flanagan G., Forsberg R., Hildenbrand T., Keller G. R., Kellogg J., Kucks R., Li X., Mainville A., Morin R., Pilkington M., Plouff D., Ravat D., Roman D., Urrutia-Fucugauchi J., Véronneau M., Webring M., Winester D. (2005) New standards for reducing gravity data: The North American gravity database. Geophysics 70, J25−J32.A.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3