Optimisation and Modelling of Soil Pulverisation Index Using Response Surface Methodology for Disk Harrow Under Different Operational Conditions

Author:

Nassir Aqeel J.1,Ramadhan Marwan N.1,Alwan Ali A.1,Muhsin Sadiq J.1

Affiliation:

1. University of Basrah, College of Agriculture Department of Agricultural Machines and Equipment Iraq

Abstract

Abstract The study aimed to determine the optimal pulverisation index of soil for disk harrow by modelling. A mathematical model was developed using a Design-Expert software and response surface methodology. Experiments were carried out in silty loamy soil with three different levels of soil moisture content of 9.25%, 17.56%, and 22.32%, operating depths of 10 cm, 15 cm, and 20 cm, and operating speeds of 3.17, 4.85, and 5.47 km·h-1. The quadratic model proposed by the Design-Expert software was statistically significant (P <0.01), with a strong correlation relationship (R 2 = 0.989) between actual and predicted soil pulverisation index values. The adequacy precision achieved at 41.84 showed the models‘ ability to navigate the design space. However, statistical analysis, using the t-test and P-value, showed the actual and predicted values have no significant differences in the pulverisation index of soil. The optimal soil pulverisation index (8.61 mm) was achieved with a desirability of 1.00, at a soil moisture content of 14.43%, an operating depth of 11.64 cm, and a forward speed of 5.30 km·h-1. Model validation confirmed acceptability (R 2 = 0.974) and a 99% accuracy in predicting the soil pulverisation index.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3