Consistent Design of PID Controllers for an Autopilot

Author:

Świder Zbigniew1ORCID,Trybus Leszek1ORCID,Stec Andrzej1ORCID

Affiliation:

1. 1 Rzeszów University of Technology , Faculty of Electrical and Computer Engineering , Poland

Abstract

Abstract A consistent approach to the development of tuning rules for course-keeping and path-tracking PID controllers for a ship autopilot are presented. The consistency comes from the observation that for each of the controllers the controlled plant can be modelled by an integrator with inertia. In the case of the course controller, it is the well-known Nomoto model. The PID controller may be implemented in series or parallel form, the consequence of which is a 2nd or 3rd order of the system, specified by a double or triple closed-loop time constant. The new tuning rules may be an alternative to the standard ones given in [1,2]. It is shown that, whereas the reference responses for the standard and new rules are almost the same, the new rules provide better suppression of disturbances such as wind, waves or current. The parallel controller is particularly advantageous. The path-tracking PID controller can provide better tracking accuracy than the conventional PI. Simulated path-tracking trajectories generated by a cascade control system are presented. The novelty of this research is in the theory, specifically in the development of new tuning rules for the two PID autopilot controllers that improve disturbance suppression.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3