Numerical Estimation of Hull Hydrodynamic Derivatives in Ship Maneuvering Prediction

Author:

Kołodziej Radosław1,Hoffmann Paweł2

Affiliation:

1. Maritime Advanced Research Centre , Gdańsk , Poland Gdańsk University of Technology , Poland

2. Maritime Advanced Research Centre , Gdańsk , Poland

Abstract

Abstract Prediction of the maneuvering characteristics of a ship at the design stage can be done by means of model tests, computational simulations or a combination of both. The model tests can be realized as a direct simulation of the standard maneuvers with the free running model, which gives the most accurate results but is also the least affordable, as it requires a very large tank or natural lake, as well as the complex equipment of the model. Alternatively, a captive model test can be used to identify the hydrodynamic characteristics of the hull, which can be used to simulate the standard maneuvers with the use of dedicated software. Two types of captive model tests are distinguished: circular motion tests (CMT) and planar motion mechanism tests (PMM). The paper presents an attempt to develop a computational method for ship maneuverability prediction in which the hydrodynamic characteristics of the hull are identified by means of computational fluid dynamics (CFD). The CFD analyses presented here directly simulate the circular motion test. The resulting hull characteristics are verified against the available literature data, and the results of the simulations are verified against the results of free running model tests. Reasonable agreement shows the large potential of the proposed method.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3