Fault Diagnosis of Imbalance and Misalignment in Rotor-Bearing Systems Using Deep Learning

Author:

Liu Fayou1ORCID,Li Weijia1,Wu Yaozhong2,He Yuhang1,Li Tianyun1

Affiliation:

1. Huazhong University of Science and Technology, School of Naval Architecture and Ocean Engineering , China

2. School of Automobile and Traffic Engineering, Wuhan University of Science and Technology , China

Abstract

Abstract Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault diagnosis methods involve the extraction of fault features under strong background noise and the classification of different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network (IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the fault diagnosis of rotor-bearing systems.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3