Synergies of Learning Analytics and Learning Design: A Systematic Review of Student Outcomes

Author:

Blumenstein MarionORCID

Abstract

The field of learning analytics (LA) has seen a gradual shift from purely data-driven approaches to more holistic views of improving student learning outcomes through data-informed learning design (LD). Despite the growing potential of LA in higher education (HE), the benefits are not yet convincing to the practitioner, in particular aspects of aligning LA data with LD toward desired learning outcomes. This review presents a systematic evaluation of effect sizes reported in 38 key studies in pursuit of effective LA approaches to measuring student learning gain for the enhancement of HE pedagogy and delivery. Large positive effects on student outcomes were found in LDs that fostered socio-collaborative and independent learning skills. Recent trends in personalization of learner feedback identified a need for the integration of student-idiosyncratic factors to improve the student experience and academic outcomes. Finally, key findings are developed into a new three-level framework, the LA Learning Gain Design (LALGD) model, to align meaningful data capture with pedagogical intentions and their learning outcomes. Suitable for various settings — face to face, blended, or fully online — the model contributes to data-informed learning and teaching pedagogies in HE.

Publisher

Society for Learning Analytics Research

Subject

Computer Science Applications,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3