Computational prediction of nonenzymatic RNA degradation patterns

Author:

Rybarczyk AgnieszkaORCID,Jackowiak Paulina,Figlerowicz Marek,Blazewicz Jacek

Abstract

Since the beginning of XXI century, the increasing interest in the research of ribonucleic acids has been observed in response to a surprising discovery of the role that RNA molecules play in the biological systems. It was demonstrated that they do not only take part in the protein synthesis (mRNA, rRNA, tRNA) but also are involved in the regulation of gene expression. Several classes of small regulatory RNAs have been discovered (e.g. microRNA, small interfering RNA, piwiRNA). Most of them are excised from specific double-stranded RNA precursors by enzymes that belong to the RNaseIII family (Drosha, Dicer or Dicer-like proteins). More recently, it has been shown that small regulatory RNAs are also generated as stable intermediates of RNA degradation (so called RNA fragments originating from tRNA, snRNA, snoRNA etc.). Unfortunately, the mechanisms underlying biogenesis of the RNA fragments remain unclear. It is thought that several factors may be involved in the formation of the RNA fragments. The most important are specific RNases, RNA-protein interactions and RNA structure.  In this work, we focus on RNA primary and secondary structures as factors influencing RNA stability and consequently the pattern of RNA fragmentation. Earlier, we identified major structural factors affecting non-enzymatic RNA degradation. Now based on these data we developed a new branch-and-cut algorithm that is able to predict the products of large RNA molecules hydrolysis in vitro. We also present the experimental data that verify the results generated using this algorithm.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3