Evaluation of the localization and biological effects of PAMAM G3 dendrimer-biotin/pyridoxal conjugate as HaCaT keratinocyte targeted nanocarrier

Author:

Szuster Magdalena,Uram Łukasz Stanisław,Filipowicz-Rachwał Aleksandra,Wołowiec Stanisław,Wałajtys-Rode Elżbieta

Abstract

Recognition of the molecular mechanisms of keratinocyte participation in normal skin homeostasis and in pathogenesis may lead to creation of more effective tools for topical application of cosmetics, cosmeceutics and drugs to a particular location within the skin for prevention and therapy of many skin disorders and diseases. For this purpose, the PAMAM G3 dendrimer with amide linkages of 9 biotin molecules and 10 molecules of pyridoxal phosphate (BC-PAMAM) was constructed, and its biological properties and cellular uptake and localization were investigated in the HaCaT keratinocytes. BC-PAMAM is nontoxic for HaCaT cells, as estimated by two assays (Neutral Red and tetrazolium salt reduction, XTT), and revealed low apoptosis induction at up to 50 µM concentration. Fluorescent labeled BC-PAMAM accumulates in HaCaT cells with high efficiency in a concentration–dependent manner. Its mitochondrial localization, estimated as Mander’s colocalization coefficient, is substantially lower than the native PAMAM, and that correlates with its cytotoxicity. The only undesirable, but significant inhibitory effect on cell mobility, evaluated by the wound healing test, was observed at 10 µM BC-PAMAM. The important anti-inflammatory action of BC-PAMAM was clearly documented by decreased production of total IL-1α, assayed with an ELISA test with unstimulated and stimulated by bacterial antigens (LPS and GroEL) HaCaT cells. Thus, it is expected that the biotin pyridoxal phosphate conjugated PAMAM may be considered as a potential carrier for safe delivery of vitamins and drugs into the epidermis.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3