Overexpressed RAD51 promoted osteogenic differentiation by activating IGF1R/PI3K/AKT pathway in osteoblasts

Author:

Qiu Minli,Xie Ya,Tu Liudan,Zhao Minjing,Yang Mingcan,Fang Linkai,Gu Jieruo

Abstract

Background: Osteoporosis (OP) is a skeleton disease induced by imbalance between osteoblast and osteoclast. Osteogenic differentiation of osteoblasts is of great importance, and the regulatory mechanisms are urgent to be studied. Methods: Differentially expressed genes were screened from microarray profile related to OP patients. The dexamethasone (Dex) was used to induce osteogenic differentiation of MC3T3-E1 cells. MC3T3-E1 cells were exposed to microgravity environment to mimic OP model cells. Alizarin Red staining and alkaline phosphatase (ALP) staining were used to evaluate the role of RAD51 in osteogenic differentiation of OP model cells. Furthermore, qRT-PCR and western blot were applied to determine expression levels of genes and proteins. Results: RAD51 expression was suppressed in OP patients and model cells. Alizarin Red staining and ALP staining intensity, the expression of osteogenesis-related proteins including runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and collagen type I alpha1 (COL1A1) were increased by over-expressed RAD51. Furthermore, RAD51 related genes were enriched in IGF1 pathway, and up-regulated RAD51 activated IGF1 pathway. The effects of oe-RAD51 on osteogenic differentiation and IGF1 pathway were attenuated by IGF1R inhibitor BMS754807. Conclusions: Overexpressed RAD51 promoted osteogenic differentiation by activating IGF1R/PI3K/AKT signaling pathway in OP. RAD51 could be a potential therapeutic marker for OP.

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3