6-Shogaol alleviates CCl4-induced liver fibrosis by attenuating inflammatory response in mice through the NF-κB pathway

Author:

Qiu Jian-li,Chai Yu-na,Duan Feng-yang,Zhang Hui-juan,Han Xiao-yan,Chen Ling-yan,Duan Fei

Abstract

Liver fibrosis is a global health problem caused by a number of diseases related to liver damage. 6-Shogaol is a biologically active substance derived from the rhizome of Zingiber officinale Roscoe with anti-tumor, anti-inflammatory, and antioxidant properties. To explore the effects of 6-Shogaol on liver fibrosis, we used a mouse model of the condition in which mice were injected intraperitoneally with carbon tetrachloride (CCl4) at a dose of 2 mL/kg three times per week for a period of 4 weeks. 6-Shogaol was administered orally at two different doses (5 mg/kg, 20 mg/kg) 30 min before CCl4 injection. CCl4 induced severe liver injury and fibrosis, as indicated by significant inflammatory cell infiltration, disordered liver structure, increased activities of aspartate aminotransferase and alanine aminotransferase (liver damage markers) in serum, elevated collagen deposition, and overexpressed alpha-smooth muscle actin (α-SMA, marker of hepatic stellate cells activation) in liver tissues, whereas 6-Shogaol administration rescued those alterations dose-dependently. We found that 6-Shogaol suppressed CCl4-induced inflammatory response by inhibiting macrophage recruitment, release of pro-inflammatory factors, and activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in liver tissues. Additionally, we demonstrated that 6-Shogaol blocked CCl4-induced activation of the nuclear factor-kappa B (NF-κB) pathway, which is a vital transcriptional regulator of the inflammatory response. Altogether, this study demonstrates that 6-Shogaol can prevent CCl4-induced liver fibrosis by suppressing inflammatory response through the NF-κB pathway and suggests that 6-Shogaol can be used for liver fibrosis prevention.

Publisher

Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3