1. N. G. Zagoruiko, O. A. Kutnenko, A. O. Zyryanov, and D. A. Levanov, “Learning to recognition without overfitting Обучение распознаванию образов без пере–обучения,” Mash. Obuch. Anal. Dannykh (Mach. Learn. Data Anal.) 1 (7), 891–901 (2014) [in Russian].
2. K. V. Vorontsov, “A combinatorial approach to estimating the quality of learning algorithms,” in Mathematical Problems in Cybernetics (Fizmatlit, Moscow, 2004), No. 13, pp. 5–36 [in Russian].
3. V. N. Vapnik, Reconstruction of functions from empirical data (Nauka, Moscow, 1979) [in Russian]; English transl.: Estimation of dependences based on empirical data (Springer–Verlag, New York–Berlin,1982).
4. N. A. Ignat’ev, “Cluster analysis and choice of standard objects in supervised pattern recognition problems,” Vychisl. Tekhnol. 20 (6), 34–43 (2015).
5. D. Y. Saidov, “Data visualization and its proof by compactness criterion of objects of classes,” Int. J. Intell. Syst. Appl. (IJISA) 9 (8), 51–58 (2017).