Electric Breakdown in Long Discharge Tubes at Low Pressure (Review)

Author:

Ionikh Yu. Z.

Abstract

Abstract The review is devoted to studies of the processes and mechanisms of ignition of a glow discharge in tubes whose length significantly exceeds their diameter (long discharge tubes) at low pressures (~10 Torr and lower) and moderate voltage rise rates (~1 kV/μs and lower). The electric field in such tubes before a breakdown is substantially nonuniform. Therefore, a breakdown occurs after an ionization wave (or waves) passes through the discharge gap at a speed of ~105–107 cm/s. This makes the characteristics of the breakdown in long tubes significantly different from the breakdown between large and closely spaced electrodes, where the electric field is uniform before the breakdown and where the Townsend or, under strong overvoltage, streamer mechanism is realized. On the other hand, the nature of these processes is very different from those occurring in nanosecond discharges, which arise at voltages with a steepness of ~1 kV/ns and higher and are associated with high-speed (~109 cm/s) ionization waves. The review is based on the materials of experimental and computational works published from 1938 to 2020. Breakdown processes, optical and electrical characteristics of the discharge gap during breakdown, and the influence of the external circuit parameters and external actions (shielding and illumination by external sources of visible radiation) are analyzed.

Publisher

Pleiades Publishing Ltd

Subject

Physics and Astronomy (miscellaneous),Condensed Matter Physics

Reference121 articles.

1. H. B. O. Davis, Electrical and Electronic Technologies: a Chronology of Events and Inventors to 1900 (Scarecrow Press, Metuchen, NJ, 1981).

2. Spectroscopy of Gas-Discharge Plasma, Ed. by S. E. Frish (Nauka, Leningrad, 1970) [in Russian].

3. Yu. P. Raizer, Gas Discharge Physics (ID Intellekt, Dolgoprudnyi, 2009; Springer, Berlin, 1997).

4. A. Javan, W. R. Bennett, and D. R. Herriott, Phys. Rev. Lett. 6, 106 (1961).

5. J. S. Townsend, Electricity in Gases (Clarendon Press, Oxford, 1915).

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3