1. H. G. Hahn, Elastizitätstheorie.
Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und
räumliche Probleme (B.G. Teubner, Stuttgart, 1985; Mir, Moscow,
1988).
2. K. F. Chernykh, Introduction to Anisotropic
Elasticity (Nauka, Moscow, 1988) [in Russian].
3. N. I. Ostrosablin, “Symmetry classes of the anisotropy tensors of quasielastic
materials and a generalized Kelvin approach,” J. Appl. Mech. Tech. Phys. 58 (3), 469–488 (2017).
4. Yu. N. Rabotnov, Elements of Hereditary Solid
Mechanics (Nauka, Moscow, 1977) [in Russian].
5. T. G. Rogers and A. C. Pipkin, “Asymmetric relaxation and compliance
matrices in linear viscoelasticity,” Z. Angew. Math. Phys. 14 (4), 334–343 (1963).