Comparative Analysis of Lithium First Wall Concepts for Tokamak with Reactor Technologies

Author:

Vertkov A. V.,Zharkov M. Yu.,Lyublinskii I. E.,Safronov V. A.

Abstract

Abstract When developing the stationary fusion reactor, an unresolved issue is the design of its intra-chamber plasma-facing elements. It has now become obvious that among the materials conventionally used for intra-chamber elements, there are no solid structural materials that would meet the requirements for the long-term operation under the effect of the flux of fusion neutrons (14 MeV) with a density of ~1014 cm–2 s–1 and the heat flux with a power density of 10–20 MW/m2. An alternative solution to this problem is the use of liquid metals as a plasma-facing materials, and, first of all, the use of lithium, which has a low atomic number (low charge number Z). Other easily-melting metals are also considered, which have higher Z number, but lower saturation vapor pressure than lithium. This will make it possible to create the long-lived, heavy-to-damage and self-renewing surface of the intra-chamber elements, which will not contaminate the plasma. The main ideas of the alternative concept of the intra-chamber elements can be formulated based on the comprehensive analysis of the problems and requirements arising during the development of intra-chamber elements of the stationary reactor, for example, the DEMO-type reactor. The article presents the analysis of the possible design of the lithium-coated intra-chamber elements and discusses the main ideas of the lithium first wall concept for the tokamak with reactor technologies.

Publisher

Pleiades Publishing Ltd

Subject

Physics and Astronomy (miscellaneous),Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3