1. K. Conrad, “A q-analogue of Mahler expansion, Advances in Mathematics, 153, 185–230 (2000).
2. B. Diarra, “Sur quelques représentations linéaires p-adiques de ℤp,” Proceedings Kon. Ned. Akad. van Wetensch (Amsterdam), Series A 82(4), 481–493 (1979).
3. B. Diarra, “The continuous coalgebra endomorphisms of % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqipC0xg9qqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvga % iyaacqWFce-qaaa!45A6! $$ \mathcal{C} $$ (ℤp, K),” Bull. Belg.Math. Soc., Simon Stevin — Supplement, 63–79 December (2002).
4. R. Díaz and E. Pariguan, “Symetric quantum Weyl algebras,” Annales Mathématiques Blaise Pascal 12(2), 187–203 (2004).
5. A. Giaquinto and J. J. Zhang, “Quantum Weyl algebras,” J. of Algebra 176, 861–881 (1995); arXiv:hepth/9310196v1.