Nanoobjects for the Luminescence Determination of Fluoroquinolones

Author:

Shtykov S. N.,Smirnova T. D.,Rusanova T. Yu.

Abstract

Abstract Fluoroquinolones are the most successful antibiotics, which also show antiviral and antitumor activity. The widespread use of fluoroquinolones in medicine, pharmaceutical chemistry, veterinary medicine and in animal, poultry, and fish feeds requires continuous improvement of methods for their determination in various samples. Sensitized fluorescence based on resonance electronic excitation energy transfer (RET) during the formation of chelates with terbium and europium ions is a promising and highly sensitive method for the determination of fluoroquinolones. This review analyzes the use of two types of nanoobjects—liquid micellar nanosystems and quantum dots based on the nanoparticles of silver, gold, and semiconductors and carbon, magnetic, and other nanomaterials—for increasing the efficiency of energy transfer and the sensitivity of the determination of fluoroquinolones in various samples. The terminology used in the inductive-resonance and exchange-resonance mechanisms of energy transfer is considered, and the fundamental difference in RET between liquid and solid types of nanoobjects is shown. Linear dynamic ranges of determined concentrations, limits of detection, and examples of practical application of sensitized fluorescence to the determination of fluoroquinolones in real samples with the use of nanoparticles and micellar nanosystems are tabulated.

Publisher

Pleiades Publishing Ltd

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3