1. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, “Brownian motion on a manifold as limit of stepwise conditioned standard Brownian motions,” in Stochastic Processes, Physics, and Geometry: New Interplays, CMS Conf. Proc., II, Leipzig, 1999 (Amer. Math. Soc., Providence, RI, 2000), Vol. 29, pp. 589–602.
2. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, Chernoff’s Theorem and Discrete Time Approximations of Brownian Motion on Manifolds, arXiv: math/0409155.
3. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, “Chernoff’s Theorem and the construction of semigroups,” in Evolution Equations: Applications to Physics, Industry, Life Sciences, and Economics, Progr. Nonlinear Differential Equations Appl., Levico Terme, 2000 (Birkhäuser, Basel, 2003), pp. 349–358.
4. O. G. Smolyanov, H. v. Weizsäcker, and O. Wittich, “Diffusion on compact Riemannian manifolds and surface measures,” Dokl. Ross. Akad. Nauk 371(4), 442–447 (2000) [Russian Acad. Sci. Dokl. Math. 61 (2), 230–234 (2000)].
5. O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, and N. A. Sidorova, “Surface measures on trajectories in Riemannian manifolds generated by diffusions,” Dokl. Ross. Akad. Nauk 377(4), 441–446 (2001) [Russian Acad. Sci. Dokl. Math. 63 (2), 203–207 (2001)].