The Properties of Thermochemical Remanent Magnetization Acquired by Slow Laboratory Cooling of Titanomagnetite-Bearing Basalt Samples from Different Temperatures and the Results of the Thellier Method

Author:

Gribov S. K.,Shcherbakov V. P.,Tsel’movich V. A.,Aphinogenova N. A.

Abstract

Abstract—The experiments have been carried out on the acquisition of thermochemical remanent magnetization (TCRM) in basalt samples containing titanomagnetite (TM) with the Curie temperature Тс ~200°C by their rapid heating to maximum temperatures Т* from 450 to 530°C followed by slow cooling in the laboratory magnetic field Blab. At different stages of the preliminary thermal treatment of the initial samples, a set of magnetomineralogical studies including electron microscopy, X-ray diffraction and thermomagnetic analyzes, and measurements of magnetic hysteresis parameters were performed. It is shown that as early as the very beginning of the cooling process, all samples demonstrate explosive growth of TCRM corresponding to the stage of rapid single-phase oxidation of the initial titanomagnetite fraction of basalt, and that TCRM is acquired by the increase of Тс and volume of single-phase oxidized parts of TM grains as well as by the growth of the volume of Ti-depleted (relative to the initial TM) cells of microstructure of the subsequent oxidative exsolution. The Arai–Nagata diagrams for the samples carrying TCRM have a form of a broken line consisting of two linear segments. The low-temperature interval T < Т* corresponds to a mixture of thermochemical and thermoremanent (TRM) magnetizations and gives a slightly overestimated Blab because of the effect of a low cooling rate during the acquisition of TCRM and TRM. The high-temperature interval corresponds to pure TCRM and the Blab strength determined from this interval is underestimated by 20–27%. It is recommended to reject samples whose Araii–Nagata diagram has two or more linear segments against the background single-component NRM.

Publisher

Pleiades Publishing Ltd

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3