Features of the Dynamical Evolution of a Massive Disk of Trans-Neptunian Objects

Author:

Emel’yanenko V. V.

Abstract

Abstract The dynamical features of a massive disk of distant trans-Neptunian objects are considered in the model of the formation of small bodies in the Hill region of a giant gas-dust clump that arose as a result of gravitational instability and fragmentation of the protoplanetary disk. The dynamical evolution of the orbits of small bodies under the action of gravitational perturbations from the outer planets and self-gravity of the disk has been studied for a time interval of the order of a billion years. It is shown that the secular effects of the gravitational influence of a massive disk of small bodies lead to an increase in the eccentricities of the orbits of individual objects. The result of this dynamical behavior is the creation of a flux of small bodies coming close to the orbit of Neptune. The change in the number of objects surviving in the observable region of distant trans-Neptunian objects (the region of orbits with perihelion distances of 40 < q < 80 AU and semimajor axes 150 < a < 1000 AU), over time depends on the initial mass of the disk. For disks with masses exceeding several Earth masses, there is a tendency to a decrease in the number of distant trans-Neptunian objects surviving in the observable region after evolution for a time interval of the order of the age of the Solar System, with an increase in the initial mass. On the other hand, for most objects, orbital eccentricities decrease under the influence of the self-gravity of the disk. Therefore, the main part of the disk is preserved in the region of heliocentric distances exceeding 100 AU.

Publisher

Pleiades Publishing Ltd

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3