1. M. P. Adams, M. L. Adams, W. D. Hawkins, T. Smith, L. Rauchwerger, N. M. Amato, T. S. Bailey, and R. D. Falgout, “Provably optimal parallel transport sweeps on regular grids,” in Proc. Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) (Sun Valley, ID, USA, May 5–9, 2013) (ANS, LaGrange Park, IL, 2013), Vol. 4, pp. 2535–2553. URL: https://experts.illinois.edu/en/publications/provably-optimal-parallel-transport-sweeps-on-regular-grids;
2. J. Comput. Phys. 407, 109234 (2020).
3. Sh. D. Pautz and T. S. Bailey, “Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions,” Nucl. Sci. Eng. 185 (1), 70–77 (2017). https://doi.org/10.13182/NSE16-34
4. T. Deakin, S. McIntosh-Smith, and W. Gaudin, “Many-core acceleration of a discrete ordinates transport mini-app at extreme scale,” in High Performance Computing, Proc. 31st Int. Conf. ISC High Performance 2016, Frankfurt, Germany, June 19–23,
2016, Ed. by J. M. Kunkel, P. Balaji, and J. Dongarra, Lecture Notes in Computer Science (Springer, Cham, 2016), Vol. 9697, pp. 429–448. https://doi.org/10.1007/978-3-319-41321-1_22
5. R. S. Baker, “An SN Algorithm for modern architectures,” Nucl. Sci. Eng. 185 (1), 107–116 (2017). https://doi.org/10.13182/NSE15-124