Maximum Induced Trees in Sparse Random Graphs
-
Published:2024-04
Issue:2
Volume:109
Page:167-169
-
ISSN:1064-5624
-
Container-title:Doklady Mathematics
-
language:en
-
Short-container-title:Dokl. Math.
Author:
Buitrago Oropeza J. C.
Publisher
Pleiades Publishing Ltd
Reference16 articles.
1. B. Bollobás, Random Graphs, 2nd ed. (Cambridge Univ. Press, Cambridge, 2001).
2. S. Janson, T. Łuczak, and A. Ruciński, Random Graphs (Wiley, New York, 2000).
3. M. E. Zhukovskii and A. M. Raigorodskii, “Random graphs: Models and asymptotic characteristics,” Russ. Math. Surv. 70 (1), 33–81 (2015). https://doi.org/10.1070/RM2015v070n01ABEH004936
4. N. M. Derevyanko and S. G. Kiselev, “Independence numbers of random subgraphs of some distance graph,” Probl. Inf. Transm. 53 (4), 307–318 (2017). https://doi.org/10.1134/S0032946017040019
5. A. N. Egorova and M. E. Zhukovskii, “Disproof of the zero–one law for existential monadic properties of a sparse binomial random graph,” Dokl. Math. 99 (1), 68–70 (2019). https://doi.org/10.1134/S1064562419010216