Subject
Mathematics (miscellaneous)
Reference9 articles.
1. Bolotin, S. and MacKay, R., Isochronous Potentials, in Proc. of the 3rd Conf. “Localization and Energy Transfer in Nonlinear Systems”, L. Vázquez, M.-P. Zorzano, R. S. MacKay (Eds.), Singapore: World Sci., 2003, pp. 217–224.
2. Calogero, F., Isochronous Systems, Oxford: Oxford Univ. Press, 2008.
3. Gorni, G. and Zampieri, G., Global Isochronous Potentials, Qual. Theory Dyn. Syst., 2013, vol. 12, no. 2, pp. 407–416.
4. Elfimov, N., On the Problem of Linearizability in a Hamiltonian System with One Degree of Freedom,
Master’s Thesis , Moscow, Moscow State University, 2021, 13 pp.
5. Stillinger, F. and Stillinger, D., Pseudoharmonic Oscillators and Inadequacy of Semiclassical Quantization, J. Phys. Chem., 1989, vol. 93, no. 19, pp. 6890–6892.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Isochronicity;Proceedings of the Steklov Institute of Mathematics;2023-09
2. Modern Methods of Mechanics;Trudy Matematicheskogo Instituta imeni V.A. Steklova;2023-09
3. Quasiperiodic Version of Gordon’s Theorem;Regular and Chaotic Dynamics;2023-01
4. Hamiltonian Systems with a Functional Parameter in the Form of a Potential;Russian Journal of Mathematical Physics;2022-09